Formation of the Δ18,19 Double Bond and Bis(spiroacetal) in Salinomycin Is Atypically Catalyzed by SlnM, a Methyltransferase‐like Enzyme†

نویسندگان

  • Chunyan Jiang
  • Zhen Qi
  • Qianjin Kang
  • Jing Liu
  • Ming Jiang
  • Linquan Bai
چکیده

Salinomycin is a widely used polyether coccidiostat and was recently found to have antitumor activities. However, the mechanism of its biosynthesis remained largely speculative until now. Reported herein is the identification of an unprecedented function of SlnM, homologous to O-methyltransferases, by correlating its activity with the formation of the Δ(18,19) double bond and bis(spiroacetal). Detailed in vivo and in vitro investigations revealed that SlnM, using positively charged S-adenosylmethionine (SAM) or sinefungin as the cofactor, catalyzed the spirocyclization-coupled dehydration of C19 in a highly atypical fashion to yield salinomycin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-Specific Modification of the Anticancer and Antituberculosis Polyether Salinomycin by Biosynthetic Engineering

The complex bis-spiroacetal polyether ionophore salinomycin has been identified as a uniquely selective agent against cancer stem cells and is also strikingly effective in an animal model of latent tuberculosis. The basis for these important activities is unknown. We show here that deletion of the salE gene abolishes salinomycin production and yields two new analogues, in both of which the C18...

متن کامل

Radical oxidative cyclization of spiroacetals to bis-spiroacetals: an overview.

The use of iodobenzene diacetate and iodine under photolytic conditions provides and efficient method for the oxidative cyclization of spiroacetals bearing an hydroxyalkyl side chain to bis-spiroacetals. An overview is provided of the use of this reaction for the synthesis of several bis-spiroacetal containing natural products such as the polyether antibiotics salinomycin and CP44,161 and the s...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

Baker’s yeast catalyzed Henry reaction: Biocatalytic C-C bond formation

The C-C bond formation is an important reaction in organic synthesis to obtain value-added intermediates. Therefore, in this paper an attempt has been made to accelerate the Henry reaction (C-C bond formation) between aryl aldehydes and nitromethane using less expensive whole cell biocatalyst, baker’s yeast (BY). The scope of the methodology was also tested for the heteryl aldehyde i.e. 2-chlor...

متن کامل

Synthesis of the DEF-bis-spiroacetal of spirastrellolide A exploiting a double asymmetric dihydroxylation/spiroacetalisation strategy.

An efficient synthesis of the C(26)-C(40) tricyclic [5,6,6]-bis-spiroacetal segment of the marine macrolide spirastrellolide A has been developed, exploiting a novel double Sharpless asymmetric dihydroxylation/spiroacetalisation sequence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015